3.857 \(\int \frac {1}{(d+e x)^3 (d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=172 \[ -\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {128 x}{495 d^9 \sqrt {d^2-e^2 x^2}}+\frac {64 x}{495 d^7 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 x}{165 d^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \]

[Out]

16/165*x/d^5/(-e^2*x^2+d^2)^(5/2)-1/11/d/e/(e*x+d)^3/(-e^2*x^2+d^2)^(5/2)-8/99/d^2/e/(e*x+d)^2/(-e^2*x^2+d^2)^
(5/2)-8/99/d^3/e/(e*x+d)/(-e^2*x^2+d^2)^(5/2)+64/495*x/d^7/(-e^2*x^2+d^2)^(3/2)+128/495*x/d^9/(-e^2*x^2+d^2)^(
1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {659, 192, 191} \[ \frac {128 x}{495 d^9 \sqrt {d^2-e^2 x^2}}+\frac {64 x}{495 d^7 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 x}{165 d^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^3*(d^2 - e^2*x^2)^(7/2)),x]

[Out]

(16*x)/(165*d^5*(d^2 - e^2*x^2)^(5/2)) - 1/(11*d*e*(d + e*x)^3*(d^2 - e^2*x^2)^(5/2)) - 8/(99*d^2*e*(d + e*x)^
2*(d^2 - e^2*x^2)^(5/2)) - 8/(99*d^3*e*(d + e*x)*(d^2 - e^2*x^2)^(5/2)) + (64*x)/(495*d^7*(d^2 - e^2*x^2)^(3/2
)) + (128*x)/(495*d^9*Sqrt[d^2 - e^2*x^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 192

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p + 1
], 0] && NeQ[p, -1]

Rule 659

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*c*d*(m + p + 1)), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p,
 x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2
], 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^3 \left (d^2-e^2 x^2\right )^{7/2}} \, dx &=-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {8 \int \frac {1}{(d+e x)^2 \left (d^2-e^2 x^2\right )^{7/2}} \, dx}{11 d}\\ &=-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {56 \int \frac {1}{(d+e x) \left (d^2-e^2 x^2\right )^{7/2}} \, dx}{99 d^2}\\ &=-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}}+\frac {16 \int \frac {1}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx}{33 d^3}\\ &=\frac {16 x}{165 d^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}}+\frac {64 \int \frac {1}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{165 d^5}\\ &=\frac {16 x}{165 d^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}}+\frac {64 x}{495 d^7 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {128 \int \frac {1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{495 d^7}\\ &=\frac {16 x}{165 d^5 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {1}{11 d e (d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^2 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {8}{99 d^3 e (d+e x) \left (d^2-e^2 x^2\right )^{5/2}}+\frac {64 x}{495 d^7 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {128 x}{495 d^9 \sqrt {d^2-e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 126, normalized size = 0.73 \[ \frac {\sqrt {d^2-e^2 x^2} \left (-125 d^8+120 d^7 e x+680 d^6 e^2 x^2+400 d^5 e^3 x^3-720 d^4 e^4 x^4-832 d^3 e^5 x^5+64 d^2 e^6 x^6+384 d e^7 x^7+128 e^8 x^8\right )}{495 d^9 e (d-e x)^3 (d+e x)^6} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^3*(d^2 - e^2*x^2)^(7/2)),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-125*d^8 + 120*d^7*e*x + 680*d^6*e^2*x^2 + 400*d^5*e^3*x^3 - 720*d^4*e^4*x^4 - 832*d^3*e
^5*x^5 + 64*d^2*e^6*x^6 + 384*d*e^7*x^7 + 128*e^8*x^8))/(495*d^9*e*(d - e*x)^3*(d + e*x)^6)

________________________________________________________________________________________

fricas [A]  time = 1.64, size = 259, normalized size = 1.51 \[ -\frac {125 \, e^{9} x^{9} + 375 \, d e^{8} x^{8} - 1000 \, d^{3} e^{6} x^{6} - 750 \, d^{4} e^{5} x^{5} + 750 \, d^{5} e^{4} x^{4} + 1000 \, d^{6} e^{3} x^{3} - 375 \, d^{8} e x - 125 \, d^{9} + {\left (128 \, e^{8} x^{8} + 384 \, d e^{7} x^{7} + 64 \, d^{2} e^{6} x^{6} - 832 \, d^{3} e^{5} x^{5} - 720 \, d^{4} e^{4} x^{4} + 400 \, d^{5} e^{3} x^{3} + 680 \, d^{6} e^{2} x^{2} + 120 \, d^{7} e x - 125 \, d^{8}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{495 \, {\left (d^{9} e^{10} x^{9} + 3 \, d^{10} e^{9} x^{8} - 8 \, d^{12} e^{7} x^{6} - 6 \, d^{13} e^{6} x^{5} + 6 \, d^{14} e^{5} x^{4} + 8 \, d^{15} e^{4} x^{3} - 3 \, d^{17} e^{2} x - d^{18} e\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

-1/495*(125*e^9*x^9 + 375*d*e^8*x^8 - 1000*d^3*e^6*x^6 - 750*d^4*e^5*x^5 + 750*d^5*e^4*x^4 + 1000*d^6*e^3*x^3
- 375*d^8*e*x - 125*d^9 + (128*e^8*x^8 + 384*d*e^7*x^7 + 64*d^2*e^6*x^6 - 832*d^3*e^5*x^5 - 720*d^4*e^4*x^4 +
400*d^5*e^3*x^3 + 680*d^6*e^2*x^2 + 120*d^7*e*x - 125*d^8)*sqrt(-e^2*x^2 + d^2))/(d^9*e^10*x^9 + 3*d^10*e^9*x^
8 - 8*d^12*e^7*x^6 - 6*d^13*e^6*x^5 + 6*d^14*e^5*x^4 + 8*d^15*e^4*x^3 - 3*d^17*e^2*x - d^18*e)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to transpose Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.06, size = 121, normalized size = 0.70 \[ -\frac {\left (-e x +d \right ) \left (-128 e^{8} x^{8}-384 e^{7} x^{7} d -64 e^{6} x^{6} d^{2}+832 e^{5} x^{5} d^{3}+720 e^{4} x^{4} d^{4}-400 e^{3} x^{3} d^{5}-680 e^{2} x^{2} d^{6}-120 x \,d^{7} e +125 d^{8}\right )}{495 \left (e x +d \right )^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}} d^{9} e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x)

[Out]

-1/495*(-e*x+d)*(-128*e^8*x^8-384*d*e^7*x^7-64*d^2*e^6*x^6+832*d^3*e^5*x^5+720*d^4*e^4*x^4-400*d^5*e^3*x^3-680
*d^6*e^2*x^2-120*d^7*e*x+125*d^8)/(e*x+d)^2/d^9/e/(-e^2*x^2+d^2)^(7/2)

________________________________________________________________________________________

maxima [A]  time = 1.50, size = 272, normalized size = 1.58 \[ -\frac {1}{11 \, {\left ({\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d e^{4} x^{3} + 3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{2} e^{3} x^{2} + 3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{3} e^{2} x + {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{4} e\right )}} - \frac {8}{99 \, {\left ({\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{2} e^{3} x^{2} + 2 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{3} e^{2} x + {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{4} e\right )}} - \frac {8}{99 \, {\left ({\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{3} e^{2} x + {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{4} e\right )}} + \frac {16 \, x}{165 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{5}} + \frac {64 \, x}{495 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d^{7}} + \frac {128 \, x}{495 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^3/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

-1/11/((-e^2*x^2 + d^2)^(5/2)*d*e^4*x^3 + 3*(-e^2*x^2 + d^2)^(5/2)*d^2*e^3*x^2 + 3*(-e^2*x^2 + d^2)^(5/2)*d^3*
e^2*x + (-e^2*x^2 + d^2)^(5/2)*d^4*e) - 8/99/((-e^2*x^2 + d^2)^(5/2)*d^2*e^3*x^2 + 2*(-e^2*x^2 + d^2)^(5/2)*d^
3*e^2*x + (-e^2*x^2 + d^2)^(5/2)*d^4*e) - 8/99/((-e^2*x^2 + d^2)^(5/2)*d^3*e^2*x + (-e^2*x^2 + d^2)^(5/2)*d^4*
e) + 16/165*x/((-e^2*x^2 + d^2)^(5/2)*d^5) + 64/495*x/((-e^2*x^2 + d^2)^(3/2)*d^7) + 128/495*x/(sqrt(-e^2*x^2
+ d^2)*d^9)

________________________________________________________________________________________

mupad [B]  time = 0.82, size = 213, normalized size = 1.24 \[ \frac {\sqrt {d^2-e^2\,x^2}\,\left (\frac {64\,x}{495\,d^7}+\frac {67}{1584\,d^6\,e}\right )}{{\left (d+e\,x\right )}^2\,{\left (d-e\,x\right )}^2}+\frac {\sqrt {d^2-e^2\,x^2}\,\left (\frac {631\,x}{2640\,d^5}-\frac {113}{528\,d^4\,e}\right )}{{\left (d+e\,x\right )}^3\,{\left (d-e\,x\right )}^3}-\frac {\sqrt {d^2-e^2\,x^2}}{88\,d^4\,e\,{\left (d+e\,x\right )}^6}-\frac {43\,\sqrt {d^2-e^2\,x^2}}{1584\,d^5\,e\,{\left (d+e\,x\right )}^5}-\frac {67\,\sqrt {d^2-e^2\,x^2}}{1584\,d^6\,e\,{\left (d+e\,x\right )}^4}+\frac {128\,x\,\sqrt {d^2-e^2\,x^2}}{495\,d^9\,\left (d+e\,x\right )\,\left (d-e\,x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d^2 - e^2*x^2)^(7/2)*(d + e*x)^3),x)

[Out]

((d^2 - e^2*x^2)^(1/2)*((64*x)/(495*d^7) + 67/(1584*d^6*e)))/((d + e*x)^2*(d - e*x)^2) + ((d^2 - e^2*x^2)^(1/2
)*((631*x)/(2640*d^5) - 113/(528*d^4*e)))/((d + e*x)^3*(d - e*x)^3) - (d^2 - e^2*x^2)^(1/2)/(88*d^4*e*(d + e*x
)^6) - (43*(d^2 - e^2*x^2)^(1/2))/(1584*d^5*e*(d + e*x)^5) - (67*(d^2 - e^2*x^2)^(1/2))/(1584*d^6*e*(d + e*x)^
4) + (128*x*(d^2 - e^2*x^2)^(1/2))/(495*d^9*(d + e*x)*(d - e*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}} \left (d + e x\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**3/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(1/((-(-d + e*x)*(d + e*x))**(7/2)*(d + e*x)**3), x)

________________________________________________________________________________________